

What can space data contribute to prevention, preparedness, response, and recovery?

Guy Schumann, PhD
& the entire team of RSS-Hydro,
& many more in LU & around the world

Geospatial and modelling intelligence for managing climate risks

FLOOD MODELLING

SafeCity
Site Specific

APPLIED RESEARCH

Research

Development

Commercialisation

EARTH OBSERVATION

FloodSENS FireSENS HydroSENS

HUMANITARIAN

Early Warning Knowledge Transfer

RSS-Hydro: The Difference

- Building sensor & platform agnostic ML & GPU-powered solutions to better prepare and respond to disasters
- Trusted SatEO Apps (ground & space)
- High fidelity surface water and river hydraulic models for single site and complete city-scale flood risk
- Focus on preparedness & response, and resilience
- High-end 3D visualization

Prepare for the Challenge Ahead

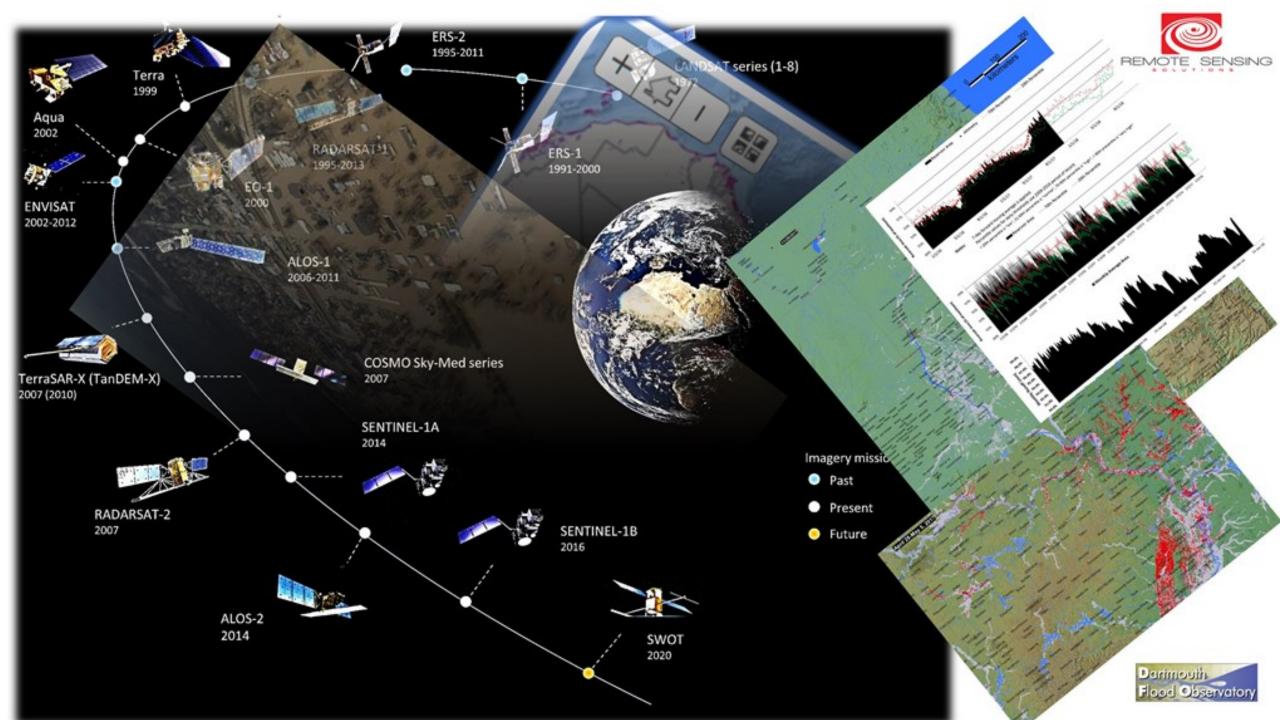
40% of world population lives on coasts

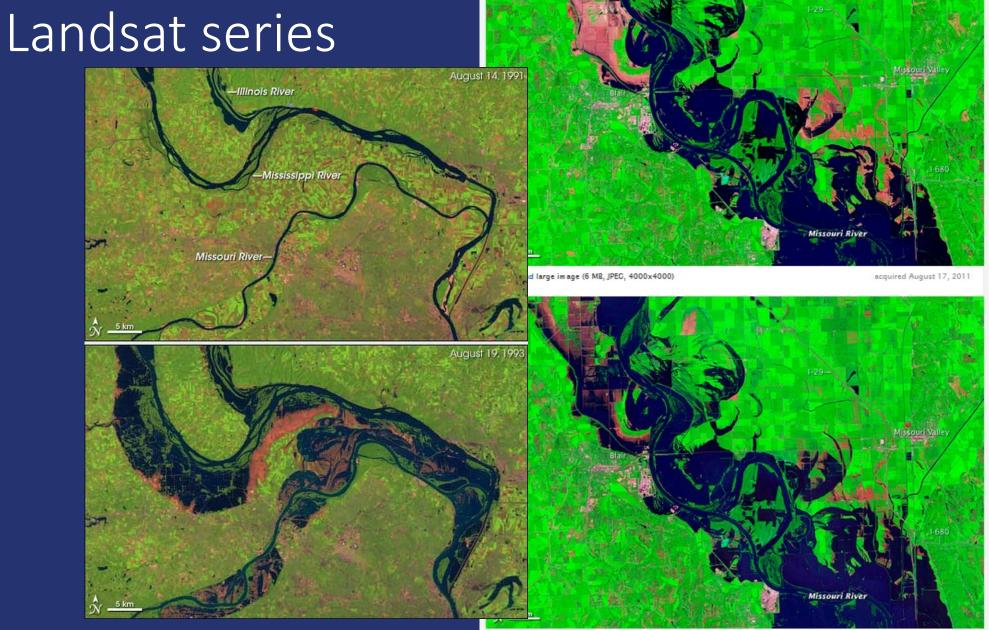
2.2B

people were affected by floods

Flooding in Australia

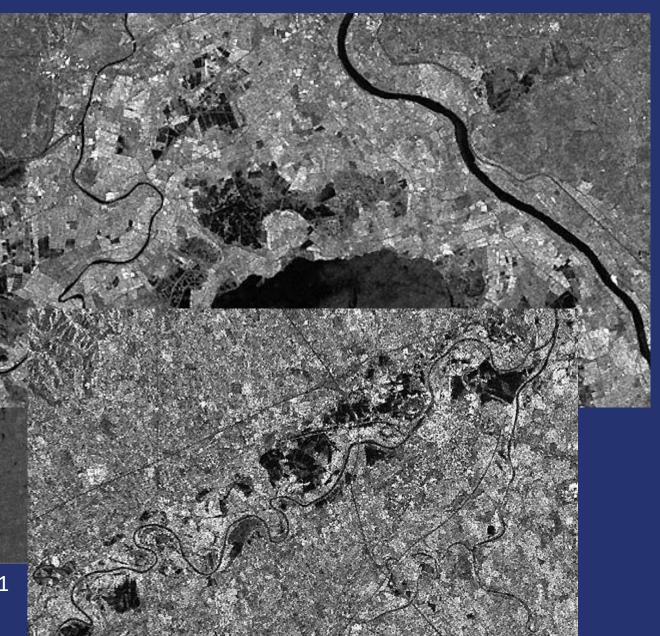
\$40B per year in damages


Flooding in India


Flood estimation needs to be done remotely as physical access is limited

Deploying instruments in disaster-stricken zones can be dangerous

Al for Earth Observation is Crucial


SAR

ERS-1

ENVISAT

ERS-1

Sentinel-1 & -2

Early **#Sentinel1** radar scan used for **@CopernicusEMS** flood mapping in the Balkans (2014)

Open Access Editor's Choice Article

Assisting Flood Disaster Response with Earth Observation Data and **Products: A Critical Assessment**

by Guy J-P. Schumann 1,2,3,*,† 🖂 🗓 G. Robert Brakenridge 3,† 🗓 Albert J. Kettner 3,† 🗓 Rashid Kashif ^{4,†} and Emily Niebuhr ^{5,†}

- ¹ Remote Sensing Solutions, Inc., Monrovia, CA 91016, USA
- ² School of Geographical Sciences, University of Bristol, BS81SS Bristol, UK
- ³ INSTAAR, University of Colorado Boulder, Boulder, CO 80303, USA
- ⁴ Self, Pelham, NH 03076, USA
- ⁵ NOAA National Weather Service, Anchorage, AK 91016, USA
- * Author to whom correspondence should be addressed.
- † These authors contributed equally to this work.

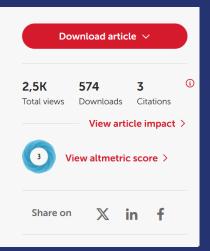
Remote Sens. 2018, 10(8), 1230; https://doi.org/10.3390/rs10081230

A look at historic breakthroughs in flood mapping from space

© shutterstock/Artsiom P

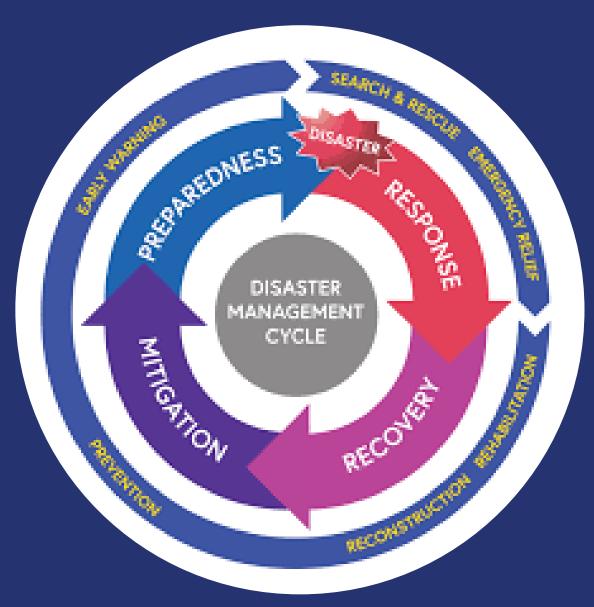
and green wavelengths of light. Vegetation appears red, n

RSS-Hydro discusses a prospective all-in-space solution that leverages high-resolution satellites to revolutionise disaster response and enhance global security for a more resilient future.


REVIEW article

Front. Remote Sens., 29 April 2024 Sec. Image Analysis and Classification Volume 4 - 2023 | https://doi.org/10.3389/frsen.2023.1280654

Breakthroughs in satellite remote sensing of floods



- ¹ RSS-Hydro, Research and Education Department, Kayl, Luxembourg
- ² School of Geographical Sciences, University of Bristol, Bristol, United Kingdom

The disaster cycle

- Mitigation: Long-term efforts to reduce disaster risk using data from tools like EO-based mapping and simulation modeling to inform protective measures.
- Preparedness: Planning and getting ready for disasters using advanced warning models & scenario simulations, like the FloodHub ML from Google and the flood digital twins created by RSS-Hydro, in partnership with big tech companies (NVIDIA, Oracle)
- Response: Immediate actions taken during a disaster, informed by real-time data and pre-disaster models (e.g. RSS-Hydro's FloodSENS SatEO application)
- Recovery: Long-term process of rebuilding and increasing resilience, guided by damage assessments and insights from all types of data and models
- Is there a space & place in the disaster cycle for space innovation & dual-use technology?

How feasible is dual-use space tech for us?

- Dual-use technologies have both civilian and military applications
- They are vital for national security and economic competitiveness, particularly for disaster management
- Companies developing these technologies face challenges with strict contracts on security, data access, and intellectual property
- While funding has increased, companies must also remain flexible to sell their solutions commercially

IN THE space sector, dual-use technologies are technologies with both civilian and military applications. Designed for one purpose, these technologies have the potential to be adapted for another. Examples include satellite navigation systems, satellite imagery, and communication satellites. Whilst enabling technologies to be dual use opens up

Built on extensive research and development in the areas of Earth observation (EO) and climate modelling, RSS-Hydro develops satellite and modelling technology designed to help authorities and organisations mitigate and manage climate challenges such as flooding and fires. Whilst its applications are developed for civil use, the company is considering the future dual-use potential of some of its products and services. With more and more organisations and space agencies looking to open up missions for dual use, RSS-Hydro has built its recent civil-use services, CeDaRS and FloodPin, with dual use in mind as a nossibility for the future.

To find out more about dual-use technologies and the benefits and challenges associated with them, *The Innovation Platform* spoke with Guy Schumann, CEO and Founder of RSS-Hydro.

Can you explain more about what dual-use space technologies are and the potential that RSS-Hydro's products and services have for dual application? I think 'dual use' can mean different things depending

products and services have for dual application? I think 'dual use' can mean different things depending on perspective, but, generally, it refers to applications developed for civil use that also have the potential to be used for defence purposes.

Moving into the defence space brings additional considerations for the companies behind these technologies. They may have to sign strict contracts to align with defence rules, being mindful of such things as security, access to data, access to machines, their team members, and how far they can act with the projects that are for defence or dual use. As an example, there are for civil use, such as the Italian Space Agency's COSMO-SkyMed, which is a co-development of the Italian for civil use, but they are controlled under the military. The Canadian Space Agency has a similar satellite mission, RADARSAT-2, which is used for civil protectio under military control. You can obtain these data for research and science, but there may be some location restrictions due to the military control aspect. With COSMO-SkyMed for instance, it's very easy to access information on such things as a volcano, landslide, or flooding. However, the military always has the priority or deciding where the acquisitions are taken.

RSS-Hydro's project, CeDaRS, and its accompanying FloodPin service sit in this arena of dual-use potential Currently, these contracts are 100% civil but, with the European Space Agency (ESA) likely to move towards dual-use missions in the future, projects like CeDaRS become very appealing from that angle. CeDaRS is designed to provide a framework for very rapid detectin and alerting with an 'all-in-space' solution. All-in-space means that data no longer needs to be transferred down to Earth to be processed and sent as an alert can instead all be done from space. This will save a lot of time and will also significantly reduce the volume of information sent. Rather than a mass of data, we can instead send down a very lightweight plece of information to Earth to alert of a disaster.

RSS-Hydro focuses on flood detecting and alerting, and floodPin is the service angle for the CeDaRS solution. Essentially, it is the pin of information for a given location that we send out. In future, we hope to be able to provide very fast detection and alerting of a flood to devices on the ground before it happens. Whilst the information doesn't have to be super precise, it would serve as a warning to authorities that a flood was due to hit their location in the forthcoming hours.

For me, the biggest concern to make FloodPin work, it's also the action that needs to work, it's also the action that needs to be taken by the person receiving that data. We want to use our services and the projects that we have with the European Space Agency as a means to educate, to make people aware that we are building something but there also needs to be action extends.

How important are dual-use technologies in the space sector for ensuring national security and economic competitiveness?

predominantly focused on floods and fires or disasters that come from nature but are often exacerbated by humans. We live in places that are very economically important but that can be very vulnerable areas, given the current climate crisis and climate signals that we see. When there is a large flood that makes an area very vulnerable, such as the recent flooding in Texas, it becomes a question of national security. The risks that come from flooding, fires, earthquakes, and related disasters are as much of a threat to national security as conflict is. The aftereffects of a hurricane, for example, are very similar to what you would see following a conflict - communication breakdowns, people needing to be rescued, and even fatalities. Taking care of such a situation is very difficult because you need to evacuate a lot of people. In addition, technology needs to work when there's no internet connection or when there's ver

It is also a question of economic viability. How fast car you recover? What's the business disruption during a flood event? What's your company doing? Is there

www.innovationnewsnetwork.com | The Innovation Platform ISSUE 23 | 000

Who Benefits?

Our clients & Partners: Target sectors

- Re-insurance
- Insurance
- Financial risk industry
- Sustainability for Finance
- Governments & Cities
- Utility companies or large corporates with exposed sites/assets
- NGOs and Humanitarian Organizations
- Partnerships with big techs for compute
 & tech innovation support

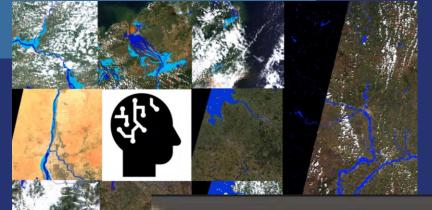
FloodSENS "Smart Sensing of Floods"

Business Landscape

Service features

- Living ML-based app using optical sat images (U-Net)
- Augmented with auxiliary datasets (DEM, water flow grids) for below cloud cover
- **Explicit** uncertainty representation
- Customizable app features

Enabling Projects, pilots, anchor customers

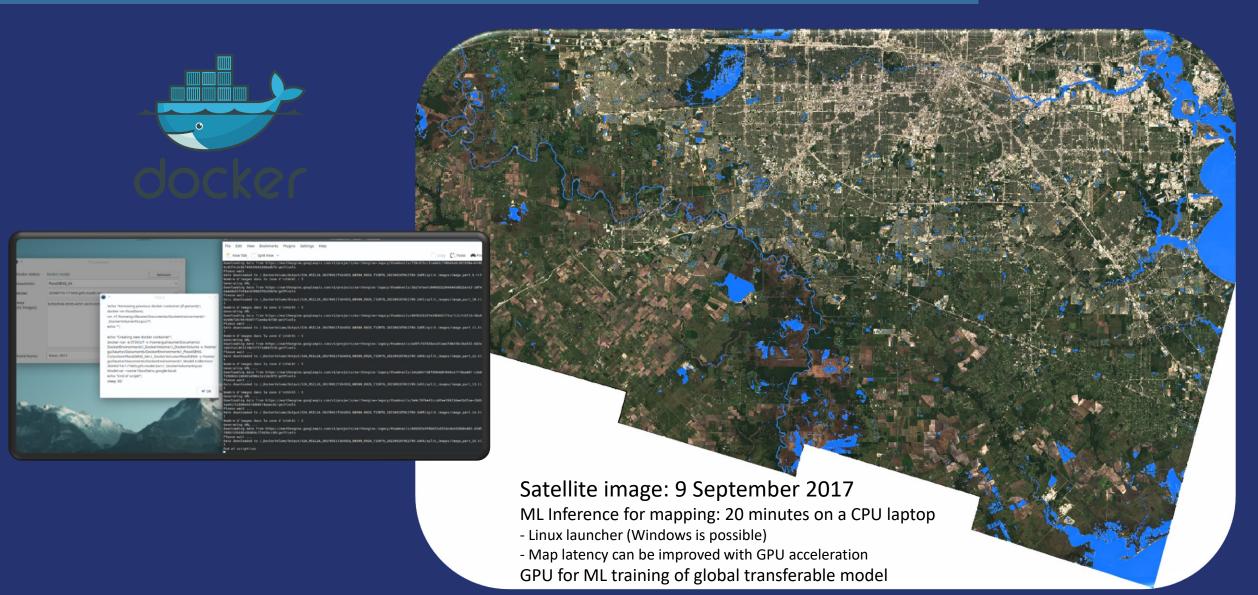

- **WTW**
- UN WFP/Moz INGC
- Microsoft Azure
- Google Cloud Services
- **NVIDIA / Omniverse**
- HPC MeluXina (LU)
- HeManEO (ESA)

Benefits

- Consistent accuracy across diverse biomes
- Flooding below clouds
- More historical events mapped
- More complete single big event maps
- Validation of cat models & claims
- Augmented 3D visualization

Customer segments & Markets

- Humanitarian, Gnl
 - NGOs, e.g.
 - Governments
- Commercial
 - (re)insurance
 - risk finance sector
- From local to global: Luxemburg, Europe, Africa, US


License levels

- Basic, on a platform
- Customized, as a service

Ongoing Development

- Trusted data and apps, for data security & ESG Complement inputs with multi-mission data & met forecasting: hybrid ML for early warning Growing truth label database

Transferability Use Case: Harvey 2017

A sample 3D scene generation of a *FloodSENS* (RSS-Hydro/ESA) simulation within NVIDIA's Omniverse platform. Significant flooding in the urban areas of Brisbane is shown for the 2022 event, with flooded aboveground electricity lines, depicted in the lower right area of the scene

https://blogs.oracle.com/cloud-infrastructure/post/rss-hydro-oci-nvidia-energy-infra-ai-flood-mode

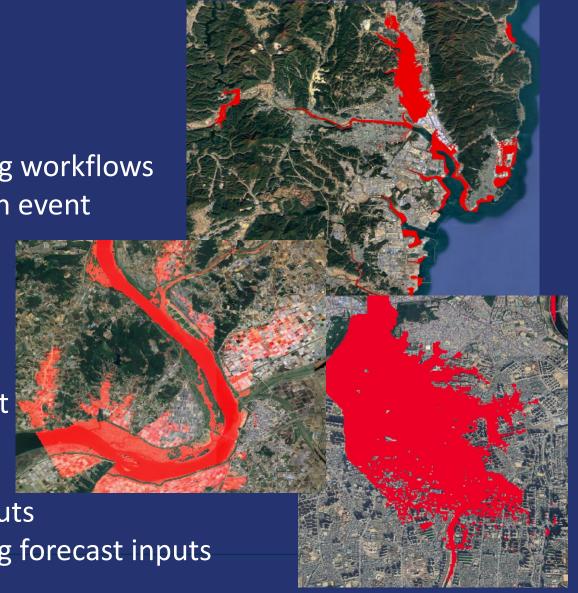
Getting FloodSENS disaster-cycle ready (here now)

Faster & clearer information

- All-in-space solution, with space asset partners D-Orbit & EnduroSat LU
- Stakeholder customer commitment & R&D with ESA/LSA: CeDaRS

Safe data & secure information

- Digital Authentication & Traceability
 Service (HeManEO-DATS with ESA/LSA
 R&D) integrated in our SatEO applications:
 Pilot Service with customer(s) starting
 09/25
- Co-developed with re-insurance stakeholder <u>Willis Re WRN</u>


Getting FloodSENS disaster-cycle ready (ongoing)

"Always" available intelligence

- Multi-mission development (our PhD student)
 - Optical, SAR, Passive Microwave, GNSS-R
- Mix between ML & traditional signal processing workflows
- At least daily downscaled intelligence during an event
- Docker & Containers: flexibility & security
- Deploy in space on constellations & cloud

Predictive analytics

- Now: FloodSENS trained on historical & current
 - Uses topography & static hydrology layers
- Multi-mission implementation ongoing
- Adding soil moisture & precipitation to ML inputs
- Predict flooded area hours to days ahead, using forecast inputs

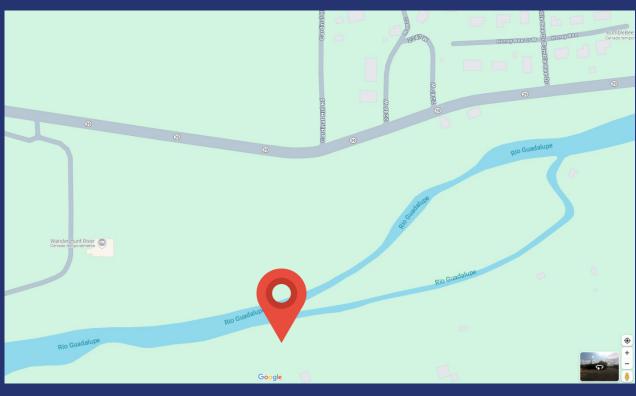


Image used to do the FloodPin service analysis © Maxar, July 8 2025 Guadalupe River along State Highway 39 near Hunt, TX

Base map layer on a platform or device

Attributes:

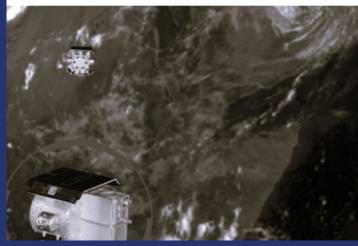
{lat; lon; radius of impact visible on image (m); level of impact (1-5); uncertainty of analysis (%); confidence level in intelligence provided (%)}

Values in FloodPin message:

{30.07; -99.31; 100; 5;

20;

90}


HUGE NEWS for Earth Observation!

We kicked off 2025 with a BANG! Our #SatEO software launched on D-Orbit's cloud infrastructure aboard Space X's #Transporter12 mission on January 14th!

In a groundbreaking first, we processed both <code>#optical</code> (European Space Agency - ESA <code>#Sentinel2</code>) and <code>#SAR</code> (European Space Agency - ESA <code>#Sentinel1</code>) images in orbit, directly addressing the devastating <code>#ShabelleRiver</code> flooding in <code>#Somalia</code> (Nov 2023). This <code>#multimission</code> processing on the <code>#cloud</code>, never before achieved in space, generated actionable flood information in minutes! This dramatically reduces <code>#latency</code> for <code>#EOassisted #disaster #alerting & #response</code>.

Using preloaded images, this successful **#derisking** demo is just the beginning! Next up: real-time transmission & processing of raw satellite data, from ANY mission, directly in orbit. The future of **#rapid #geospatial #intelligence** is closer than you think! **#FloodSENS-IOX #docker #ML**

Thanks to all our amazing #collaborators, #partners, and programs that are supporting us! Special thanks to Luxembourg Space Agency, European Space Agency - ESA & Ben Gaffinet for supporting the initial #FloodSENS development and for their ongoing #support! We also want to thank in particular Viney Jean-Francois Dhiri, Luca Tonini, Pierre-Philippe Mathieu & James Parr, Bertrand Le Saux & Nicolas Longépé for their continuous #inspiration & support!

"Real SW de-risking is important...!"

+ Follow

- Congrats to RSS-Hydro for this groundbreaking first aboard our compute node on ION Satellite Carrier! For the first time ever, the same algorithm processed SAR and Optical data, same place same time, directly in orbit, demonstrating the potential to rapidly produce meaningful insight at the speed of relevance on multiple data modalities.
- RSS-Hydro is setting a new standard for disaster response and geospatial intelligence, using D-Orbit's unique infrastructure and services.
- Beyond deploying payloads, our ION Satellite Carrier also acts as a powerful platform to upload and run #software and algorithms in #space. By integrating edge computing supported by Unibap AB products on flight now with #data from onboard and external sensors, we unlock real-time processing capabilities that were once only possible on the ground.

#wearedorbit #spacetech #edgecomputing #satellites #cloud #cloudcomputing

** Impressive results from RSS-Hydro and D-Orbit demonstrating the ability to run multimission data analysis in orbit on the cloud. In the In-Orbit Demonstration, RSS-Hydro's #FloodSENS app processed #Sentinel data from the devastating Shabelle River flooding in Somalia, 2023.

- The novelty? The dataset contained both #SAR and #Optical data, two very different data types that have never been processed in orbit in the same place same time before. This experiment paves the road for exciting applications like data fusion and cloud computing in space.
- How was it possible? With the help of our newest iX5 in space, launched with D-Orbit's Endless Sky-mission not more than a month ago. This is just the latest of many Unibap edge computers in use on D-Orbit platforms that together have helped to test close to 50 other software applications in orbit.

We look forward to continue supporting D-Orbit with cutting edge compute solutions, and helping our software community to test and evaluate their software products in space!

Every drop counts: How space tech innovations are satellites can be launched more affordably, democratising access to space-based data collection. Companies are also revolutionising Earth observation

With new applications and a project backed by the European Space Agency, RSS-Hydro is poised to revolutionise the field of Earth observation

MAGINE a world where floods are detected and alerts are sent with pinpoint accuracy weeks in advance, where urban development is meticulously planned based on real-time environmental data, and where the impact of climate change is tracked with unprecedented detail. This is not science fiction; it's the rapidly evolving reality powered by groundbreaking innovations in space platforms, satellite communications (satcom), and Earth observation (EO) missions. Companies like Luxembourgbased RSS-Hydro, with cutting-edge applications like loodSENS and its new project CeDaRS, supported by the European Space Agency (ESA), are at the forefront of this revolution, demonstrating the transformative potential of an 'all-in-space' approach to understanding and managing our planet.

invaluable data for weather forecasting, environmental monitoring, and disaster response. However, recent technological leaps are ushering in a new era of capabilities, making EO more precise, timely, and

The dawn of advanced space platforms The traditional model of large, monolithic satellites is being disrupted by the rise of smaller, more agile platforms. CubeSats and SmallSats, often deployed in they can image the same area much more frequently This high temporal resolution is crucial for dynamic events like flood monitoring, where near real-time data is

with each other, create resilient networks that can bypass terrestrial infrastructure, ensuring data reacher users even in remote or disaster-stricken areas. The development of software-defined satellites allows for on-orbit reconfiguration of communication payloads, providing the flexibility to adapt to changing data demands and user needs

> Earth observation missions: A new level of detail The EO missions themselves are undergoing a radical transformation. Hyperspectral imaging, capturing data across hundreds of narrow spectral bands, provides a far more detailed 'fingerprint' of the Earth's surface, enabling precise identification of vegetation types, soi

exploring innovative platform designs, including cloud computing infrastructure and modular systems, allowing

for greater flexibility and adaptability in orbit

The sheer volume of data generated by advanced EO missions demands robust and high-speed communication links. Advancements in satcom are

meeting this challenge. Laser communication promises significantly higher data transfer rates compared to

traditional radio frequencies, enabling the downlink of massive datasets in a fraction of the time. Inter-satellite links, where satellites communicate directly analysis, extracting actionable insights before the data even reaches the ground. This on-orbit intelligence is crucial for rapid disaster assessment and environmenta change detection. RSS-Hydro: Pioneering integrated space solutions

RSS-Hydro exemplifies the power of these integrated space solutions. It is developing an all-in-space service solution, called FloodPin, that leverages satellite imagery, combined with hydrological know-how and Al, to provide accurate and timely flood insights and impact assessments. This capability is a gamechanger for disaster preparedness and response, allowing authorities and communities to take proactive measure: to mitigate damage and save lives.

radar (SAR) technology and other microwave systems,

can penetrate clouds and darkness, providing critical information during severe weather events when

ontical sensors are limited. The integration of artificial intelligence (AI) and machine learning (ML) on board satellites allows for real-time data processing and

a cornerstone of many flood mapping applications.

Furthermore, their project CeDaRS (Comprehensive space-tech powered Disaster Response Solution), supported by ESA, highlights the importance of advar data processing and analytics. Extracting meaningful information from the vast amounts of EO data requires sophisticated algorithms and infrastructure. real-time flood insights: RSS-Hydro's Pin leverages Al and multi-sensor

ra of increasing flood risks, advanced, real-time monitoring cial. Countries and global communities need precise, rapid

The Project: FloodPin

+352 621 136 249

RRS-Hydro

WWW.INNOVATIONNEWSNETWORK.COM

RSS-Hydro

SDGs EYES

51 rue de Noertzange L-3670 Kayl

(+352 26 52 10 90

